Multiplex CRISPR/Cas9-based genome engineering enhanced by Drosha-mediated sgRNA-shRNA structure

نویسندگان

  • Qiang Yan
  • Kun Xu
  • Jiani Xing
  • Tingting Zhang
  • Xin Wang
  • Zehui Wei
  • Chonghua Ren
  • Zhongtian Liu
  • Simin Shao
  • Zhiying Zhang
چکیده

The clustered regularly interspaced short palindromic repeats (CRISPR) system has recently been developed into a powerful genome-editing technology, as it requires only two key components (Cas9 protein and sgRNA) to function and further enables multiplex genome targeting and homology-directed repair (HDR) based precise genome editing in a wide variety of organisms. Here, we report a novel and interesting strategy by using the Drosha-mediated sgRNA-shRNA structure to direct Cas9 for multiplex genome targeting and precise genome editing. For multiplex genome targeting assay, we achieved more than 9% simultaneous mutant efficiency for 3 genomic loci among the puromycin-selected cell clones. By introducing the shRNA against DNA ligase IV gene (LIG4) into the sgRNA-shRNA construct, the HDR-based precise genome editing efficiency was improved as more than 2-fold. Our works provide a useful tool for multiplex and precise genome modifying in mammalian cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excision of Nucleopolyhedrovirus Form Transgenic Silkworm Using the CRISPR/Cas9 System

The CRISPR/Cas9-mediated genome engineering has been shown to efficiently suppress infection by disrupting genes of the pathogen. We recently constructed transgenic lines expressing CRISPR/Cas9 and the double sgRNA target Bombyx mori nucleopolyhedrovirus (BmNPV) immediate early-1 (ie-1) gene in the silkworm, respectively, and obtained four transgenic hybrid lines by G1 generation hybridization:...

متن کامل

Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector

Engineered DNA-binding proteins that manipulate the human genome and transcriptome have enabled rapid advances in biomedical research. In particular, the RNA-guided CRISPR/Cas9 system has recently been engineered to create site-specific double-strand breaks for genome editing or to direct targeted transcriptional regulation. A unique capability of the CRISPR/Cas9 system is multiplex genome engi...

متن کامل

Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs

Genetic engineering in livestock was greatly enhanced by the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), which can be programmed with a single-guide RNA (sgRNA) to generate site-specific DNA breaks. However, the uncertainties caused by wide variations in sgRNA activity impede the utility of this system in generating genetically mod...

متن کامل

Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing.

The CRISPR/Cas9-sgRNA system has been developed to mediate genome editing and become a powerful tool for biological research. Employing the CRISPR/Cas9-sgRNA system for genome editing and manipulation has accelerated research and expanded researchers' ability to generate genetic models. However, the method evaluating the efficiency of sgRNAs is lacking in plants. Based on the nucleotide composi...

متن کامل

Sequence determinants of improved CRISPR sgRNA design.

The CRISPR/Cas9 system has revolutionized mammalian somatic cell genetics. Genome-wide functional screens using CRISPR/Cas9-mediated knockout or dCas9 fusion-mediated inhibition/activation (CRISPRi/a) are powerful techniques for discovering phenotype-associated gene function. We systematically assessed the DNA sequence features that contribute to single guide RNA (sgRNA) efficiency in CRISPR-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016